Novel duplication mutation of the DYSF gene in a Pakistani family with Miyoshi Myopathy
نویسندگان
چکیده
OBJECTIVES To identify the underlying gene mutation in a large consanguineous Pakistani family. Methods: This is an observational descriptive study carried out at the Department of Biochemistry, Shifa International Hospital, Quaid-i-Azam University, and Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan from 2013-2016. Genomic DNA of all recruited family members was extracted and the Trusight one sequencing panel was used to assess genes associated with a neuro-muscular phenotype. Comparative modeling of mutated and wild-type protein was carried out by PyMOL tool. Results: Clinical investigations of an affected individual showed typical features of Miyoshi myopathy (MM) like elevated serum creatine kinase (CK) levels, distal muscle weakness, myopathic changes in electromyography (EMG) and muscle histopathology. Sequencing with the Ilumina Trusight one sequencing panel revealed a novel 22 nucleotide duplication (CTTCAACTTGTTTGACTCTCCT) in the DYSF gene (NM_001130987.1_c.897-918dup; p.Gly307Leufs5X), which results in a truncating frameshift mutation and perfectly segregated with the disease in this family. Protein modeling studies suggested a disruption in spatial configuration of the putative mutant protein. Conclusion: A novel duplication of 22 bases (c.897_918dup; p.Gly307Leufs5X) in the DYSF gene was identified in a family suffering from Miyoshi myopathy. Protein homology analysis proposes a disruptive impact of this mutation on protein function.
منابع مشابه
Identification of a novel founder mutation in the DYSF gene causing clinical variability in the Spanish population.
BACKGROUND Mutations in the dysferlin (DYSF) gene cause 3 different phenotypes of muscular dystrophies: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal anterior compartment myopathy. OBJECTIVE To present the results of clinical and molecular analysis of 8 patients with dysferlinopathy from 5 unrelated families. DESIGN Clinical assessment was performed with a standardize...
متن کاملClinical and Genetic Analysis of Korean Patients with Miyoshi Myopathy: Identification of Three Novel Mutations in the DYSF Gene
Miyoshi myopathy (MM) is an autosomal recessive distal muscular dystrophy caused by mutations in the dysferlin gene (DYSF) on chromosome 2p13. Although MM patients and their mutations in the DYSF gene have been found from all over the world, there is only one report of genetically confirmed case of MM in Korea. Recently, we encountered three unrelated Korean patients with MM and two of them hav...
متن کاملPhenotypic features and genetic findings in 2 chinese families with Miyoshi distal myopathy.
BACKGROUND Miyoshi distal myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) were found to map to the same mutant gene encoding for dysferlin on chromosome 2p13. Most reported cases were large inbred kindreds whose members demonstrated both MM and LGMD2B phenotypes. OBJECTIVE To investigate the clinical, neurophysiological, histopathological, and genetic features in 4 patients ...
متن کاملA novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides
OBJECTIVE Mutations in dysferlin (DYSF), a Ca(2+)-sensitive ferlin family protein important for membrane repair, vesicle trafficking, and T-tubule function, cause Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal myopathy. More than 330 pathogenic DYSF mutations have been identified within exons or near exon-intron junctions. In ~17% of patients who lack normal DYSF, only a s...
متن کاملIntracellular accumulation and reduced sarcolemmal expression of dysferlin in limb--girdle muscular dystrophies.
Dysferlin has recently been identified as a novel gene involved in limb-girdle muscular dystrophy type 2B (LGMD2B) and its allelic disease, Miyoshi myopathy. The predicted structure of dysferlin suggests that it is a transmembrane protein possibly involved in membrane fusion. Thus, unlike previously identified structural proteins in muscular dystrophy, dysferlin is likely involved in a novel pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2017